Theoretical and Experimental Modal Analysis

Maia, Silva, He, Lieven, Lin, Skingle, To, Urgueira

Editors:

Nuno M. M. Maia Júlio M. M. Silva

Theoretical and Experimental Modal Analysis

MECHANICAL ENGINEERING RESEARCH STUDIES ENGINEERING DYNAMICS SERIES

Series Editor: Professor J. B. Roberts, University of Sussex, England

- 4. Parametric Random Vibration R. A. Ibrahim
- Statistical Dynamics of Nonlinear and Time-Varying Systems
 M. F. Dimentberg
- 8. Vibroacoustical Diagnostics for Machines and Structures M. F. Dimentberg, K. V. Frolov and A. I. Menyailov
- 9. Theoretical and Experimental Modal Analysis

 Edited by Nuno M. M. Maia and Júlio M. M. Silva
- Modal Testing: Theory, Practice and Application, SECOND EDITION
 D. J. Ewins

Theoretical and Experimental Modal Analysis

Edited by

Nuno Manuel Mendes Maia

and

Júlio Martins Montalvão e Silva

Instituto Superior Técnico, Portugal

RESEARCH STUDIES PRESS LTD.

15/16 Coach House Cloisters, 10 Hitchin Street, Baldock, Hertfordshire, England, SG7 6AE

Copyright © 1997, by Research Studies Press Ltd.

Reprinted July 1998

All rights reserved.

No part of this book may be reproduced by any means, nor transmitted, nor translated into a machine language without the written permission of the publisher.

Marketing:

NORTH AMERICA Taylor & Francis Inc. 325 Chestnut Street, Philadelphia, PA 19106, USA

EUROPE & REST OF THE WORLD

Research Studies Press Ltd.

15/16 Coach House Cloisters, 10 Hitchin Street, Baldock, Hertfordshire, England, SG7 6AE

Distribution:

NORTH AMERICA

Taylor & Francis Inc.

47 Runway Road, Suite G. Levittown, PA 19057 - 4700, USA

EUROPE & REST OF THE WORLD

John Wiley & Sons Ltd.

Shripney Road, Bognor Regis, West Sussex, England, PO22 9SA

Library of Congress Cataloging-in-Publication Data

Theoretical and experimental modal analysis / edited by Nuno Manuel Mendes Maia and Júlio Martins Montalvão e Silva.

p. cm. -- (Mechanical engineering research studies.

Engineering dynamics series; 9)

Includes bibliographical references and index.

ISBN 0-86380-208-7 (Research Studies Press : alk. paper). -- ISBN 0-471-97067-0 (Wiley: alk. paper)

1. Modal analysis. I. Maia, Nuno Manuel Mendes, 1956-

II. Montalvão e Silva, J. M. (Júlio Martins), 1945- .

III. Series.

TA654, 15, T48 1997

620.3--dc21

96-38057

CIP

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library.

ISBN 0 86380 208 7

Contributing Authors

Nuno Manuel Mendes Maia

Associate Professor

Department of Mechanical Engineering
Instituto Superior Técnico / Technical University of Lisbon, Lisbon, Portugal

Júlio Martins Montalvão e Silva

Professor

Department of Mechanical Engineering
Instituto Superior Técnico / Technical University of Lisbon, Lisbon, Portugal

Jimin He

Senior Lecturer

Department of Mechanical Engineering Victoria University of Technology, Melbourne, Australia

Nicholas Andrew John Lieven

Lecturer

Department of Aerospace Engineering
University of Bristol, Bristol, United Kingdom

Rong Ming Lin

Lecturer

School of Mechanical and Production Engineering
Nanyang Technological University, Singapore, Republic of Singapore

Graham William Skingle

Research Scientist
Aero-Structures Department
Defence Evaluation and Research Agency, Farnborough, United Kingdom

Wai-Ming To

Assistant Professor

Mechanical Engineering Department
The Hong Kong University of Science & Technology, Kowloon, Hong-Kong

António Paulo Vale Urgueira

Associate Professor

Department of Mechanical Engineering
Faculty of Sciences and Technology / New University of Lisbon, Monte da
Caparica, Portugal

Contents

PRE	FACE	X V
СНА	PTER 1	
FUN	DAMENTALS OF MODAL ANALYSIS	1
1.1	INTRODUCTION 1	
1.2	BASIC CONCEPTS. SINGLE DEGREE-OF-FREEDOM	
	(SDOF) SYSTEMS 2	
	1.2.1 Free vibration 2	
	1.2.2 Forced vibration 8	
	1.2.3 Nonharmonic excitation. Fourier analysis 12	
	1.2.4 Time Domain. Impulse Response Function (IRF) 15	
	1.2.5 The Laplace Domain. Transfer Function 18	
	1.2.6 The Frequency Response Function (FRF) 22	
	1.2.7 Random excitation 23	
	1.2.8 Viscous and Hysteretic damping mechanisms 29	
1.3	REPRESENTATION AND PROPERTIES OF AN FRF 32	
	1.3.1 Receptance 32	
	1.3.2 Alternative forms of the FRF 38	
	1.3.3 Damping estimates. Special properties of the Nyquist plots	43
1.4	MULTIPLE DEGREE-OF-FREEDOM (MDOF) SYSTEMS 49	
	1.4.1 Natural Frequencies and Mode Shapes 50	
	Undamped MDOF systems 50	

Viscously damped MDOF systems 56

	Hysteretically damped MDOF systems 62
	1.4.2 MDOF forced response analysis 63
	Hysteretically damped model 64
	Viscously damped model 67
1.5	REPRESENTATION AND PROPERTIES OF MDOF FRFs 70
	1.5.1 General considerations 70
	1.5.2 MDOF FRF graphical representation 73
1.6	COMPLETE AND INCOMPLETE MODELS 81
СНА	PTER 2
	NAL PROCESSING FOR MODAL ANALYSIS 87
	INTRODUCTION 87
	FOURIER ANALYSIS 88
	2.2.1 Discrete Fourier Transform (DFT) 93
	2.2.2 Fast Fourier Transform (FFT) 97
2.3	SINGLE-INPUT SINGLE-OUTPUT ANALYSIS
	OF MECHANICAL STRUCTURES 101
	2.3.1 Frequency Response Function estimators 102
	2.3.2 Effects of noise on H ₁ , H ₂ and H ₃ estimators 105
	2.3.3 Effects of leakage on H ₁ , H ₂ and H ₃ estimators 109
2.4	MULTI-INPUT MULTI-OUTPUT ANALYSIS
	OF MECHANICAL STRUCTURES 115
	2.4.1 Partial and Multiple Coherence functions 116
	2.4.2 Effects of Structure-Shakers interaction on FRFs 120
2.5	CONCLUDING REMARKS 122
СНА	PTER 3
MOD	AL TESTING 123
3.1	VIBRATION TESTING FOR MODAL ANALYSIS 123
	3.1.1 Introduction 123
	3.1.2 Basic measurement chain 125
3.2	TEST PLANNING AND OBJECTIVES IN MODAL TESTING 127
3.3	TEST SET-UP 129
	3.3.1 Support of the structure under test 129
	3.3.2 Support of the excitation system 131
	3.3.3 Attachment of the excitation system
	to the structure under test 132
3.4	SELECTION AND USE OF TRANSDUCERS 134